0 Members and 1 Guest are viewing this topic.

#### Kon-Fu-Sed

• Medium Member
• Contributor at Large
• 340
• Probability Meister
##### Multi-million spins statistics
January 19, 2009, 02:27:22 PM
Hi all,

I happened to see that someone had posted statistics from a multimillion spins investigation on "another" board.

Because I like you people here so much, I post these tables so that you don't have to do the same kind of boring and time-consuming tests again, just because your amount of spins isn't 12M...

And NO; I didn't run some thousands of billions of spins to get to these figures: I used my calculator
Very simple.

Please compare these figures to tests that you have seen or done!

(The "50/50" values are true 50% chance - like coin-tossing)

SINGLE ZERO TABLES

How many trials do we need, MATHEMATICALLY, to find a sequence of AT LEAST length X?

X                    50/50             "Even"              Cl/Dz             DblStr
2:                   3                  3                  8                 37
3:                   7                  7                 28                233
4:                  15                 16                 89              1,445
5:                  31                 35                277              8,916
6:                  63                 74                858             54,991
7:                 127                154              2,648            339,118
8:                 255                317              8,167          2,091,238
9:                 511                654             25,186         12,895,976
10:               1,023              1,345             77,660         79,525,192
11:               2,047              2,767            239,454        490,405,361
12:               4,095              5,689            738,320      3,024,166,401
13:               8,191             11,696          2,276,491     18,649,026,147
14:              16,383             24,043          7,019,184    115,002,327,911
15:              32,767             49,423         21,642,486    709,181,022,129
16:              65,535            101,592         66,731,001  4,373,282,969,801
17:             131,071            208,830        205,753,922
18:             262,143            429,264        634,407,931
19:             524,287            882,377      1,956,091,122
20:           1,048,575          1,813,778      6,031,280,963
21:           2,097,151          3,728,322     18,596,449,640
22:           4,194,303          7,663,775     57,339,053,061
23:           8,388,607         15,753,316    176,795,413,608
24:          16,777,215         32,381,819    545,119,191,962
25:          33,554,431         66,562,629  1,680,784,175,221
26:          67,108,863        136,823,183  5,182,417,873,600
27:         134,217,727        281,247,655
28:         268,435,455        578,120,181
29:         536,870,911      1,188,358,151
30:       1,073,741,823      2,442,736,201

How many trials do we need, MATHEMATICALLY, to find a sequence of AT LEAST length X?

X                   Corner             SngStr              Split             Single
2:                  84                151                341              1,368
3:                 790              1,875              6,330             50,652
4:               7,319             23,136            117,134          1,874,160
5:              67,717            285,365          2,166,997         69,343,956
6:             626,397          3,519,513         40,089,474      2,565,726,408
7:           5,794,180         43,407,350        741,655,289     94,931,877,132
8:          53,596,182        535,357,330     13,720,622,865  3,512,479,453,920
9:         495,764,692      6,602,740,424    253,831,523,036
10:       4,585,823,413     81,433,798,580  4,695,883,176,188
11:      42,418,866,580  1,004,350,182,499
12:     392,374,515,880
13:   3,629,464,271,903

... and the opposite:

How long sequences can we expect, MATHEMATICALLY, in X trials?

X        50/50   "Even"    Cl/Dz   DblStr   Corner   SngStr    Split   Single
1,000        9        9        6        3        3        2        2        1
5,000       12       11        7        4        3        3        2        2
10K       13       12        8        5        4        3        3        2
50K       15       15        9        5        4        4        3        2
100K       16       15       10        6        5        4        3        3
500K       18       18       11        7        5        5        4        3
1M       19       19       12        7        6        5        4        3
5M       22       21       13        8        6        6        5        4
10M       23       22       14        8        7        6        5        4
12M       23       22       14        8        7        6        5        4
15M       23       22       14        9        7        6        5        4
20M       24       23       14        9        7        6        5        4
25M       24       23       15        9        7        6        5        4
50M       25       24       15        9        7        7        6        4
100M       26       25       16       10        8        7        6        5
1000M       29       28       18       11        9        8        7        5

DOUBLE ZERO TABLES

How many trials do we need, MATHEMATICALLY, to find a sequence of AT LEAST length X?

X                    50/50            "Even"               Cl/Dz             DblStr
2:                   3                  3                  9                 39
3:                   7                  8                 30                253
4:                  15                 18                 99              1,607
5:                  31                 40                317             10,188
6:                  63                 87              1,007             64,533
7:                 127                185              3,192            408,719
8:                 255                393             10,110          2,588,562
9:                 511                831             32,018         16,394,232
10:               1,023              1,757            101,395        103,830,144
11:               2,047              3,711            321,088        657,590,920
12:               4,095              7,835          1,016,781      4,164,742,499
13:               8,191             16,543          3,219,811     26,376,702,500
14:              16,383             34,925         10,196,071    167,052,449,175
15:              32,767             73,732         32,287,561  1,057,998,844,780
16:              65,535            155,659        102,243,946  6,700,659,350,280
17:             131,071            328,614        323,772,499
18:             262,143            693,743      1,025,279,584
19:             524,287          1,464,571      3,246,718,687
20:           1,048,575          3,091,873     10,281,275,844
21:           2,097,151          6,527,289     32,557,373,510
22:           4,194,303         13,779,833    103,098,349,450
23:           8,388,607         29,090,761    326,478,106,596
24:          16,777,215         61,413,830  1,033,847,337,557
25:          33,554,431        129,651,422  3,273,849,902,267
26:          67,108,863        273,708,558
27:         134,217,727        577,829,180
28:         268,435,455      1,219,861,604
29:         536,870,911      2,575,263,388
30:       1,073,741,823      5,436,667,154

How many trials do we need, MATHEMATICALLY, to find a sequence of AT LEAST length X?

X                   Corner             SngStr              Split             Single
2:                  89                159                360              1,443
3:                 856              2,031              6,858             54,871
4:               8,144             25,741            130,320          2,085,135
5:              77,377            326,069          2,476,098         79,235,167
6:             735,090          4,130,227         47,045,880      3,010,936,383
7:           6,983,371         52,316,223        893,871,738    114,415,582,591
8:          66,342,042        662,672,173     16,983,563,040  4,347,792,138,495
9:         630,249,408      8,393,847,545    322,687,697,778
10:       5,987,369,391    106,322,068,924  6,131,066,257,800
11:      56,880,009,226  1,346,746,206,390
12:     540,360,087,661
13:   5,133,420,832,794

... and the opposite:

How long sequences can we expect, MATHEMATICALLY, in X trials?

X        50/50   "Even"    Cl/Dz   DblStr   Corner   SngStr    Split   Single
1,000        9        9        5        3        3        2        2        1
5,000       12       11        7        4        3        3        2        2
10K       13       12        7        4        4        3        3        2
50K       15       14        9        5        4        4        3        2
100K       16       15        9        6        5        4        3        3
500K       18       17       11        7        5        5        4        3
1M       19       18       11        7        6        5        4        3
5M       22       20       13        8        6        6        5        4
10M       23       21       13        8        7        6        5        4
12M       23       21       14        8        7        6        5        4
15M       23       22       14        8        7        6        5        4
20M       24       22       14        9        7        6        5        4
25M       24       22       14        9        7        6        5        4
50M       25       23       15        9        7        6        6        4
100M       26       24       15        9        8        7        6        5
1000M       29       27       17       11        9        8        7        5

If you've got a calculator... WHY spend time doing boring multimillion spins tests?
The end results are the same... Aren't they?

Regards,
KFS
If s**t can happen, s**t will happen.

#### bliss

• Guest
##### Re: Multi-million spins statistics
January 19, 2009, 03:46:42 PM
Nice work KFS.

One thing though, do you think this would be better off in the reference section? It's bound to come in useful in the future, and if left here it will be buried...

#### kompressor

• Perseverant Member
• 175
• MY B&M CASINO
##### Re: Multi-million spins statistics
January 20, 2009, 12:36:13 AM
if i'm looking for a sequence of 5....i look at greater than 4 ??

thanks

#### Kon-Fu-Sed

• Medium Member
• Contributor at Large
• 340
• Probability Meister
##### Re: Multi-million spins statistics
January 20, 2009, 07:35:41 AM
Hi Bliss, kompressor, and all,

@ Bliss:
Yes, you are right. I wasn't sure...
So I followed the instruction: "If unsure; post it here..."

@ kompressor:
Yes, you have to be looking for greater than four.
Five is greater than four, right?

How shall I explain this?
I wish I was a teacher...

If you have 35 roulette-results there should (mathematically and in average) be at least one sequence there of length 5.

But we cannot say for certain that it is broken by the opposite or a zero at that exact length.
The sequence MAY be 6 or 7 long.
We can only say "for certain" (math certainty, that is ) that there will be at least five of the same.
(Mathematically and in average...)

The thing is, that if you look at enough 35-spins samples you will - sooner or later - find one sample that contains 35 of the same...
(I wrote sooner or later - maybe you have to check a "few" billions of samples before you find it. But it will be there...)

Anywayzzz... I understand what you are saying...
So I have - as you may see - changed the headings and indices to what I hope will be more clear.

Best regards,
KFS
If s**t can happen, s**t will happen.

#### kompressor

• Perseverant Member
• 175
• MY B&M CASINO
##### Re: Multi-million spins statistics
January 20, 2009, 05:29:56 PM
good lord kon-fu...

FULL TRIO (TERA TNT)

"...All Even-money bets balance out closely after +/- 100 spins. (The Law of averages)
The average is 55/45. Nine out of ten times the discrepancy between two even-money bets will be
less the 20 i.e. 60/40. YOU WOULD WIN NINE OUT OF TEN TIMES WITH BASICPLAY IF
THERE WERE NO TABLE LIMITS. BUT, the Casinos also need to be profitable. This is why
we developed AdvPlay1 and 2. These two systems combined with BasicPlay will keep your
stakes low ( under the table limit) and bring your count back to one as quick as possible ...."

FULLTRIO.pdf

any statistics endorse that ??

#### Kon-Fu-Sed

• Medium Member
• Contributor at Large
• 340
• Probability Meister
##### Re: Multi-million spins statistics
January 20, 2009, 09:29:55 PM
Hi kompressor,

No.

As I have said before; nothing will really "even out" other than in percent.
And the larger the sample the smaller the difference is ... in percent.

But a small percentage of a large sum is also a large number.
I mean that 5% of 100 is 5 while 0.05% of 100,000 is 50 - ten times more while the percentage was 1/100th.

And so: The larger the sample, the wider is the spread.
IN NUMBERS.
Or, in the down-to-earth term: IN UNITS.

And regarding 100-spins sequences that is talked about...

I ran 1,000,000 such sequences and counted how many "High" numbers (>18) there were in each.
This was for single-zero...

I stopped at some "levels" and output the sums that far.
And this is the result:

[table=,]
High,      10,     50,    100,    500,   1000,   5000,    10K,    50K,   100K,   500K,     1M
21,       ,       ,       ,       ,       ,       ,       ,       ,       ,       ,      1
22,       ,       ,       ,       ,       ,       ,       ,       ,       ,       ,
23,       ,       ,       ,       ,       ,       ,       ,       ,       ,       ,
24,       ,       ,       ,       ,       ,       ,       ,       ,       ,       ,
25,       ,       ,       ,       ,       ,       ,       ,       ,       ,      1,      1
26,       ,       ,       ,       ,       ,       ,       ,       ,       ,       ,
27,       ,       ,       ,       ,       ,       ,       ,       ,       ,       ,      5
28,       ,       ,       ,       ,       ,       ,       ,      1,      1,      4,      9
29,       ,       ,       ,       ,       ,       ,       ,      4,      6,     22,     36
30,       ,       ,       ,       ,       ,      1,      1,      4,      6,     33,     82
31,       ,       ,       ,       ,       ,      1,      3,     10,     16,     67,    129
32,       ,       ,       ,       ,       ,      3,      5,     20,     34,    146,    300
33,       ,       ,       ,       ,       ,      1,      6,     26,     59,    286,    594
34,       ,       ,       ,       ,      1,      2,      6,     46,     97,    512,   1038
35,       ,       ,       ,       ,      1,      9,     18,     92,    183,    944,   1860
36,       ,      1,      1,      1,      2,     12,     26,    144,    294,   1513,   3081
37,       ,       ,       ,      1,      5,     28,     56,    252,    516,   2614,   5270
38,       ,       ,      1,      2,      6,     48,     89,    422,    816,   4116,   8259
39,       ,      1,      1,      5,     11,     78,    137,    651,   1291,   6404,  12666
40,       ,       ,      3,     16,     23,     95,    177,    835,   1696,   8781,  17637
41,      1,      1,      5,     16,     33,    144,    256,   1267,   2525,  12636,  24978
42,       ,      1,      2,     12,     32,    188,    385,   1714,   3331,  16490,  33167
43,       ,      1,      2,     17,     35,    185,    407,   2090,   4167,  21005,  42058
44,       ,      2,      4,     21,     43,    244,    504,   2618,   5215,  25913,  52038
45,      1,      4,      7,     40,     77,    330,    618,   3030,   6105,  30657,  61085
46,      2,      8,     13,     38,     71,    326,    655,   3414,   6865,  34632,  69218
47,       ,      4,      6,     36,     67,    374,    746,   3845,   7580,  37919,  75505
48,      1,      3,      8,     44,     82,    407,    770,   3956,   8033,  39607,  78955
49,      1,      1,      6,     33,     77,    416,    785,   3902,   7889,  39892,  79800
50,       ,      4,      6,     35,     67,    365,    732,   3793,   7680,  38556,  76966
51,       ,      3,      5,     32,     60,    350,    711,   3507,   7078,  35357,  70939
52,      1,      3,      9,     40,     69,    312,    642,   3204,   6362,  31904,  63554
53,       ,      2,      3,     33,     68,    288,    589,   2855,   5586,  27585,  55099
54,       ,      3,      6,     21,     52,    233,    455,   2235,   4505,  22323,  44762
55,      1,      1,      3,     19,     38,    161,    355,   1765,   3478,  17555,  35581
56,       ,      1,      3,     11,     30,    131,    294,   1378,   2791,  13628,  27162
57,       ,      1,      1,      9,     18,     90,    189,    998,   1999,  10003,  20011
58,      2,      4,      4,     11,     20,     80,    154,    724,   1422,   6810,  13780
59,       ,      1,      1,      5,      6,     41,     90,    485,    956,   4719,   9519
60,       ,       ,       ,      1,      2,     28,     60,    286,    575,   3013,   6162
61,       ,       ,       ,       ,      1,     12,     32,    162,    363,   1860,   3765
62,       ,       ,       ,      1,      2,      8,     18,    117,    225,   1139,   2260
63,       ,       ,       ,       ,      1,      5,     17,     81,    122,    636,   1305
64,       ,       ,       ,       ,       ,      2,      7,     35,     69,    344,    660
65,       ,       ,       ,       ,       ,      1,      2,     16,     33,    204,    387
66,       ,       ,       ,       ,       ,       ,      1,      9,     15,     91,    170
67,       ,       ,       ,       ,       ,       ,      1,      4,      8,     45,     76
68,       ,       ,       ,       ,       ,      1,      1,      3,      4,     16,     40
69,       ,       ,       ,       ,       ,       ,       ,       ,      3,     11,     18
70,       ,       ,       ,       ,       ,       ,       ,       ,       ,      4,      7
71,       ,       ,       ,       ,       ,       ,       ,       ,      1,      2,      3
72,       ,       ,       ,       ,       ,       ,       ,       ,       ,      1,      1
73,       ,       ,       ,       ,       ,       ,       ,       ,       ,       ,      1
[/table]

As you can see, the more sequences we investigate (the larger the sample), the wider is the spread of Highs/hits - in NUMBERS.

Please note that there was for example as few as 36 Highs/hits in one sample of only 50, which shows that also low-probability events can happen very early in the chain of events.
(Take care )

Regards,
KFS

If s**t can happen, s**t will happen.

#### VLSroulette

• Guest
##### Re: Multi-million spins statistics
January 20, 2009, 09:36:41 PM
I happened to see that someone had posted statistics from a multimillion spins investigation on "another" board.

Hi mate that "someone" (poit!) generously gave thumbs-up for us to host such analysis here:
http://vlsroulette.com/reference-area/12-million-rng-spin-stats-shared-by-poit/

#### Kon-Fu-Sed

• Medium Member
• Contributor at Large
• 340
• Probability Meister
##### Re: Multi-million spins statistics
January 20, 2009, 09:47:28 PM
Hi Victor,

I saw that and I think that's excellent as anyone now can compare my calculated figures with a true statistics investigation.
His stats include so much more than my figures, but what that data shows is that everything else also conform to math - like the SD, for example.
Check it out - there is no surprise at all in there.

This is a math game when you treat number-sequences as number-sequences and the wheel/dealer as an RNG.
That's why we can simply use a calculator instead of running billions of spins to collect stats.

Poit's stats and my calculations show that conclusively, IM(ns )HO.

KFS
If s**t can happen, s**t will happen.

#### Kon-Fu-Sed

• Medium Member
• Contributor at Large
• 340
• Probability Meister
##### Re: Multi-million spins statistics
January 20, 2009, 10:44:06 PM
Regarding to "even out in the long run"...

Suddenly I thought like this:

Suppose that during 3700 spins one "even" chance hits exactly as expected: 18/37.
That means it hit 1800 times.

Now, suppose we expect  it to "even out" during the next 3700 spins.
So we expect it to hit a total of 3700 times during the total of 7400 spins - that's to even out, right?

Of those 3700 hits we already had 1800 in the first 3700 spins so we expect 1900 hits during the next 3700 spins.

But then the "even" chance has to hit 19/37...

Is there ANY reason why it should?

And it doesn't matter if you think it's going to even out during the next 37 or 37 billions spins: It still has to hit BETTER than 18/37.
Even if it hit AT THE EXPECTED 18/37 before.
Now, think of the necessary hit-rate to even out, if it had hit BELOW 18/37...

The truth is that an "even bet" (or ANY bet) will only "even out" to its NORMAL hit-rate of 18/37 (or whatever) in the long run.

And for the "even" bets, that missing "half/37" is an ever growing number in the long run:
0.5/37 of 3700 = 50 below half
0.5/37 of 37M = 500,000 below half...

To some, this seems to mean to "even out". In the long run.

Just my \$0.02 - just a thought of how to explain it...

Never mind.

KFS
If s**t can happen, s**t will happen.

#### purple

• Member
• 73
##### Re: Multi-million spins statistics
January 24, 2009, 03:18:44 PM
Hi Kon Fu Sed,
First of all thank you for all your hard work.
Now I'm trying to understand your stats.
What do these extracts from your tables below mean ?

Is it for instance that we need a maximum of 37 spins for a doublestreet to repeat twice?28 spins for a cl/dz to repeat twice? 1368 for a straight up to repeat? That a cl/dz will repeat 4 times within 89 spins?
And what are these long sequences of 10K and 50K? Is it that within 1000 there will be at least 6 repeats of a cl/dz?

Thanks
Purple

SINGLE ZERO TABLES

How many trials do we need, MATHEMATICALLY, to find a sequence of AT LEAST length X?

X                    50/50             "Even"              Cl/Dz             DblStr
2:                   3                  3                  8                 37
3:                   7                  7                 28                233
4:                  15                 16                 89              1,445
5:                  31                 35                277              8,916

and
How many trials do we need, MATHEMATICALLY, to find a sequence of AT LEAST length X?

X                   Corner             SngStr              Split             Single
2:                  84                151                341              1,368
3:                 790              1,875              6,330             50,652
4:               7,319             23,136            117,134          1,874,160

... and the opposite:

How long sequences can we expect, MATHEMATICALLY, in X trials?

X        50/50   "Even"    Cl/Dz   DblStr   Corner   SngStr    Split   Single
1,000        9        9        6        3        3        2        2        1
5,000       12       11        7        4        3        3        2        2
10K       13       12        8        5        4        3        3        2
50K       15       15        9        5        4        4        3        2

My best all time favourite roulette book filled with hundreds of pictures is 'The Roulette Winner' by Lee Tutor.

#### Kon-Fu-Sed

• Medium Member
• Contributor at Large
• 340
• Probability Meister
##### Re: Multi-million spins statistics
January 24, 2009, 06:32:39 PM
Hi purple,

Yes.

Or maybe not.

Quote

we need a maximum of 37 spins

Not really maximum...
Mathematically that's what is needed to find a repeating 6/37 bet.

Quote

Is it that within 1000 there will be at least 6 repeats of a cl/dz?

In 1,000 trials you can expect (mathematically) to find at least one repeat-sequence of a column/dozen (a 12/37 bet) that is at least six long.

You can compare my results (the 12M line above) to the stats posted here:
http://vlsroulette.com/reference-area/12-million-rng-spin-stats-shared-by-poit/

Stats results:
Evens repeats: 22, 22, 22, 21, 21, 23. My calculator says [highlight]22[/highlight]
Dozens/Columns repeats: 18, 14, 14, 14, 13, 16. My calculator says [highlight]14[/highlight]
Double Street repeats: 8, 8, 8, 9, 8, 9, 8, 9, 8, 10, 9. My calculator says [highlight]8[/highlight]
Corner repeats: 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 7, 7, 8, 7, 7, 7, 6, 7, 7, 8, 7. My calculator says [highlight]7[/highlight]
Single Street repeats: 7, 6, 6, 7, 6, 6, 7, 6, 6, 6, 6, 6. My calculator says [highlight]6[/highlight]
Splits repeats: 1 repeats 4 times, 39 repeats 5 times and 20 repeats 6 times. My calculator says [highlight]5[/highlight]
Single numbers: 29 repeats 4 times and 8 repeats 5 times. My calculator says [highlight]4[/highlight]

IMHO, a calculator is useful sometimes.
(One doesn't need to work so hard to get the figures )
KFS
If s**t can happen, s**t will happen.

#### purple

• Member
• 73
##### Re: Multi-million spins statistics
January 25, 2009, 03:58:33 AM
Hi I'm still trying to get it.

Stats results:
Evens repeats: 22, 22, 22, 21, 21, 23. My calculator says 22

Are you saying that in 1000 spins there will be  about 22 alterations for every even chance (BR, HL, OE), ie 132 alterations in total?) I don't think you're saying that there will be one instance of an even chance repeating 22 times are you?

Dozens/Columns repeats: 18, 14, 14, 14, 13, 16. My calculator says 14
In 1000 spins On average each column repeated itself at least 13 times, or one instance when a col/doz repeated itself 13 times in a row?Double Street repeats: 8, 8, 8, 9, 8, 9, 8, 9, 8, 10, 9. My calculator says 8
In 1000 spins each street repeated itself at least 8 times, or was there one instance when a street repeated itself 8 times in a row?[/i]

etc for

Corner repeats: 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 7, 7, 8, 7, 7, 7, 6, 7, 7, 8, 7. My calculator says 7
Single Street repeats: 7, 6, 6, 7, 6, 6, 7, 6, 6, 6, 6, 6. My calculator says 6

Splits repeats: 1 repeats 4 times, 39 repeats 5 times and 20 repeats 6 times.
My calculator says 5 Please explain this
Single numbers: 29 repeats 4 times and 8 repeats 5 times. My calculator says 4

My best all time favourite roulette book filled with hundreds of pictures is 'The Roulette Winner' by Lee Tutor.

#### Kon-Fu-Sed

• Medium Member
• Contributor at Large
• 340
• Probability Meister
##### Re: Multi-million spins statistics
January 25, 2009, 07:26:14 AM
Hi purple,

The repeat-values I showed - for example:
Quote

[highlight]Evens repeats: 22, 22, 22, 21, 21, 23.[/highlight] My calculator says 22

were copied from the 12-million spins statistics that I gave you the link to: .
http://vlsroulette.com/reference-area/12-million-rng-spin-stats-shared-by-poit/

So they were found in 12 million spins.
The six values are for Low, High, Red, Black, Odd and Even, respectively.

I copied the repeat-values for col/doz, dbl streets, corners, single streets, splits and singles from the same 12 million spins stats.

My calculator values (same example):
Quote

Evens repeats: 22, 22, 22, 21, 21, 23. [highlight]My calculator says 22[/highlight]

were taken from the table "How long sequences can we expect, MATHEMATICALLY, in X trials?"
This is the X = 12M (12,000,000) line in that table (single zero):

X        50/50   "Even"    Cl/Dz   DblStr   Corner   SngStr    Split   Single
[highlight]12M[/highlight]
23       [highlight]22[/highlight]       14        8        7        6        5        4
[/tt]
Showing that in 12 million spins, a 22-repeater of an "even" (18/37) bet will be found (mathematically).
And the rest of the "calculator values" are also found at that line.

I hope this clears things up for you.
KFS
If s**t can happen, s**t will happen.

#### Breeze88

• Perseverant Member
• 173
##### Re: Multi-million spins statistics
February 17, 2009, 01:02:21 PM
HI Kon-Fu-Sed

Now that we know that all chances even out , we should take advantage of this , shouldnt we?

here is a example of how i think we could take advantage of the even out  rule...

so lets say a dozen didnt showed for at least 13 spins and when that dozen shows after the 13th spin we should bet on it , because its rather unlikely that that dozen will go now back to sleep for another long trail because  of the even out rule.. isnt it?

or how often do you see such an extreme event exmpl on doz .:  12122211121221123212122111222112

waht do you think?

cheerz